Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 38(6): 1044-1055, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050861

RESUMO

BACKGROUND: Venglustat is a brain-penetrant, small molecule inhibitor of glucosylceramide synthase used in clinical testing for treatment of Parkinson's disease (PD). Despite beneficial effects in certain cellular and rodent models, patients with PD with mutations in GBA, the gene for lysosomal glucocerebrosidase, experienced worsening of their motor function under venglustat treatment (NCT02906020, MOVES-PD, phase 2 trial). OBJECTIVE: The objective of this study was to evaluate venglustat in mouse models of PD with overexpression of wild-type α-synuclein. METHODS: Mice overexpressing α-synuclein (Thy1-aSyn line 61) or Gba-mutated mice with viral vector-induced overexpression of α-synuclein in the substantia nigra were administered venglustat as food admixture. Motor and cognitive performance, α-synuclein-related pathology, and microgliosis were compared with untreated controls. RESULTS: Venglustat worsened motor function in Thy1-aSyn transgenics on the challenging beam and the pole test. Although venglustat did not alter the cognitive deficit in the Y-maze test, it alleviated anxiety-related behavior in the novel object recognition test. Venglustat reduced soluble and membrane-bound α-synuclein in the striatum and phosphorylated α-synuclein in limbic brain regions. Although venglustat reversed the loss of parvalbumin immunoreactivity in the basolateral amygdala, it tended to increase microgliosis and phosphorylated α-synuclein in the substantia nigra. Furthermore, venglustat also partially worsened motor performance and tended to increase neurofilament light chain in the cerebrospinal fluid in the Gba-deficient model with nigral α-synuclein overexpression and neurodegeneration. CONCLUSIONS: Venglustat treatment in two mouse models of α-synuclein overexpression showed that glucosylceramide synthase inhibition had differential detrimental or beneficial effects on behavior and neuropathology possibly related to brain region-specific effects. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Modelos Animais de Doenças
2.
Mol Genet Metab Rep ; 30: 100843, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35242574

RESUMO

GM2 and GM1 gangliosidoses are genetic, neurodegenerative lysosomal sphingolipid storage disorders. The earlier the age of onset, the more severe the clinical presentation and progression, with infantile, juvenile and late-onset presentations broadly delineated into separate phenotypic subtypes. Gene and substrate reduction therapies, both of which act directly on sphingolipidosis are entering clinical trials for treatment of these disorders. Simple to use biomarkers for disease monitoring are urgently required to support and expedite these clinical trials. Here, lysosphingolipid and protein biomarkers of sphingolipidosis and neuropathology respectively, were assessed in plasma samples from 33 GM2 gangliosidosis patients, 13 GM1 gangliosidosis patients, and compared to 66 controls. LysoGM2 and lysoGM1 were detectable in 31/33 GM2 gangliosidosis and 12/13 GM1 gangliosidosis patient samples respectively, but not in any controls. Levels of the axonal damage marker Neurofilament light (NF-L) were highly elevated in both GM2 and GM1 gangliosidosis patient plasma samples, with no overlap with controls. Levels of the astrocytosis biomarker Glial fibrillary acidic protein (GFAP) were also elevated in samples from both patient populations, albeit with some overlap with controls. In GM2 gangliosidosis patient plasma NF-L, Tau, GFAP and lysoGM2 were all most highly elevated in infantile onset patients, indicating a relationship to severity and phenotype. Plasma NF-L and liver lysoGM2 were also elevated in a GM2 gangliosidosis mouse model, and were lowered by treatment with a drug that slowed disease progression. These results indicate that lysosphingolipids and NF-L/GFAP have potential to monitor pharmacodynamics and pathogenic processes respectively in GM2 and GM1 gangliosidoses patients.

3.
Oncogene ; 40(9): 1659-1673, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33500549

RESUMO

The clinical benefit of MAPK pathway inhibition in melanoma patients carrying BRAF mutations is temporal. After the initial response to treatment, the majority of tumors will develop resistance and patients will relapse. Here we demonstrate that the endothelin-endothelin receptor B (ETBR) signaling pathway confers resistance to MAPK pathway inhibitors in BRAF mutated melanoma. MAPK blockade, in addition to being anti-proliferative, induces a phenotypic change which is characterized by increased expression of melanocyte-specific genes including ETBR. In the presence of MAPK inhibitors, activation of ETBR by endothelin enables the sustained proliferation of melanoma cells. In mouse models of melanoma, including patient-derived xenograft models, concurrent inhibition of the MAPK pathway and ETBR signaling resulted in a more effective anti-tumor response compared to MAPK pathway inhibition alone. The combination treatment significantly reduced tumor growth and prolonged survival compared to therapies with MAPK pathway inhibitors alone. The phosphoproteomic analysis revealed that ETBR signaling did not induce resistance towards MAPK pathway inhibitors by restoring MAPK activity, but instead via multiple alternative signaling pathways downstream of the small G proteins GNAq/11. Together these data indicate that a combination of MAPK pathway inhibitors with ETBR antagonists could have a synergistically beneficial effect in melanoma patients with hyperactivated MAPK signaling pathways.


Assuntos
Melanoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Receptor de Endotelina B/genética , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Antagonistas do Receptor de Endotelina B/farmacologia , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Transl Sci ; 14(2): 558-567, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33142037

RESUMO

In this first-in-human study, the tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of single and multiple oral doses of sinbaglustat, a dual inhibitor of glucosylceramide synthase (GCS) and non-lysosomal glucosyl ceramidase (GBA2), were investigated in healthy subjects. The single-ascending dose (SAD) and multiple-ascending dose (MAD) studies were randomized, double-blind, and placebo-controlled. Single doses from 10 to 2,000 mg in men and multiple doses from 30 to 1,000 mg twice daily for 7 days in male and female subjects were investigated. Tolerability, PK, and PD data were collected up to 3 days after (last) treatment administration and analyzed descriptively. Sinbaglustat was well-tolerated in the SAD and MAD studies, however, at the highest dose of the MAD, three of the four female subjects presented a similar pattern of general symptoms. In all cohorts, sinbaglustat was rapidly absorbed. Thereafter, plasma concentrations decreased biphasically. In the MAD study, steady-state conditions were reached on Day 2 without accumulation. During sinbaglustat treatment, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide, and globotriaosylceramide decreased in a dose-dependent manner, reflecting GCS inhibition. The more complex the glycosphingolipid, the more time was required to elicit PD changes. After treatment stop, GlcCer levels returned to baseline and increased above baseline at lowest doses, probably due to the higher potency of sinbaglustat on GBA2 compared to GCS. Overall, sinbaglustat was welltolerated up to the highest tested doses. The PK profile is compatible with b.i.d. dosing. Sinbaglustat demonstrated target engagement in the periphery for GCS and GBA2.


Assuntos
Glucosilceramidase/antagonistas & inibidores , Glucosiltransferases/antagonistas & inibidores , Imino Açúcares/administração & dosagem , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Piperidinas/administração & dosagem , Administração Oral , Adulto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Meia-Vida , Voluntários Saudáveis , Humanos , Imino Açúcares/efeitos adversos , Imino Açúcares/farmacocinética , Masculino , Pessoa de Meia-Idade , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Placebos/administração & dosagem , Placebos/efeitos adversos , Adulto Jovem
5.
J Proteome Res ; 19(10): 4196-4209, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32870689

RESUMO

One of the most important advantages of mass spectrometry is the ability to quantify proteins and their modifications in parallel to obtain a holistic picture of the protein of interest. Here, we present a hybrid immunoaffinity targeted mass spectrometry (MS) method that combines efficient pan-antibody enrichment of a specific protein from plasma with the selectivity of high-resolution targeted MS analysis to quantitate specific proteoforms of interest. We used this approach to quantify plasma levels of the chemokine CXCL10 that has been associated with many immunological disorders such as systemic lupus erythematosus and primary Sjögren's Syndrome (pSS). The hybrid approach enabled sensitive, specific, and simultaneous quantification of total, full-length (active) CXCL101-77 and DPP4-truncated (inactive) CXCL103-77 in human plasma down to the low pg/mL level, reaching ELISA sensitivities. Samples from 30 control subjects and 34 pSS patients (n = 64) were analyzed. The ratio of CXCL101-77 to truncated CXCL103-77 was significantly increased in patients with pSS and provided the highest correlation with pSS disease activity. Therefore, this CXCL10 proteoform ratio represents an interesting exploratory disease activity biomarker to further investigate. As this strategy can be readily adapted to other plasma proteins and proteoforms of interest, we are convinced that it will lead to a more detailed understanding of proteoforms in physiology and pathology yielding more relevant biomarkers and drug targets.


Assuntos
Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , Biomarcadores , Quimiocina CXCL10/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Espectrometria de Massas , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/genética
6.
PLoS One ; 13(11): e0207872, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485339

RESUMO

Pathological features of pulmonary fibrosis include accumulation of myofibroblasts and increased extracellular matrix (ECM) deposition in lung tissue. Contractile α-smooth muscle actin (α-SMA)-expressing myofibroblasts that produce and secrete ECM are key effector cells of the disease and therefore represent a viable target for potential novel anti-fibrotic treatments. We used primary normal human lung fibroblasts (NHLF) in two novel high-throughput screening assays to discover molecules that inhibit or revert fibroblast-to-myofibroblast differentiation. A phenotypic high-content assay (HCA) quantified the degree of myofibroblast differentiation, whereas an impedance-based assay, multiplexed with MS / MS quantification of α-SMA and collagen 1 alpha 1 (COL1) protein, provided a measure of contractility and ECM formation. The synthetic prostaglandin E1 (PGE1) alprostadil, which very effectively and potently attenuated and even reversed TGF-ß1-induced myofibroblast differentiation, was identified by screening a library of approved drugs. In TGF-ß1-induced myofibroblasts the effect of alprostadil was attributed to activation of prostanoid receptor 2 and 4 (EP2 and EP4, respectively). However, selective activation of the EP2 or the EP4 receptor was already sufficient to prevent or reverse TGF-ß1-induced NHLF myofibroblast transition. Our high-throughput assays identified chemical structures with potent anti-fibrotic properties acting through potentially novel mechanisms.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP4/agonistas , Desdiferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Miofibroblastos/patologia , Fenótipo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Aprendizado de Máquina Supervisionado
7.
Clin Pharmacol Ther ; 104(6): 1260-1267, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29663345

RESUMO

Serotonin (5-HT) is synthesized from dietary tryptophan (Trp) and plays an important role in numerous diseases of the central nervous system and periphery. Stable isotope tracers enable safe monitoring of metabolic rates. Here we demonstrate measurement of peripheral 5-HT synthesis in healthy subjects by monitoring the produced [13 C10 ]-5-HT (h-5-HT) in EDTA-whole blood from three doses of orally administered [13 C11 ]-Trp (h-Trp) tracer. h-Trp was rapidly absorbed and distributed in a multiphasic manner, followed by a slower terminal elimination phase. The h-5-HT synthesis rate was dependent on h-Trp dose, appeared linear up to 12 hours postdose, and could be reliably assessed for the two highest doses. The human data was compared to similar studies in rats and dogs, finding larger interspecies differences in the h-5-HT synthesis rate than in 5-HT levels. In future studies, the h-5-HT synthesis rate can be used to assess disease-dysregulated 5-HT synthesis or quantify the pharmacodynamics of 5-HT synthesis inhibitors.


Assuntos
Isótopos de Carbono/sangue , Serotonina/biossíntese , Triptofano/sangue , Administração Oral , Adulto , Animais , Isótopos de Carbono/administração & dosagem , Isótopos de Carbono/farmacocinética , Cães , Feminino , Humanos , Marcação por Isótopo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Serotonina/sangue , Especificidade da Espécie , Triptofano/administração & dosagem , Triptofano/farmacocinética , Adulto Jovem
8.
Clin Pharmacol Ther ; 103(4): 703-711, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28699267

RESUMO

Lucerastat is a glucosylceramide synthase inhibitor aimed at reducing production of glycosphingolipids (GSLs), including those accumulating in Fabry disease. The safety, tolerability, pharmacodynamics, and pharmacokinetics of oral lucerastat were evaluated in an exploratory study in patients with Fabry disease. In this single-center, open-label, randomized study, 10 patients received lucerastat 1,000 mg b.i.d. for 12 weeks in addition to enzyme replacement therapy (ERT; the lucerastat group). Four patients with Fabry disease received ERT only. Eight patients reported 17 adverse events (AEs) in the lucerastat group. No clinically relevant safety abnormalities were observed. The mean (SD) levels of the plasma GSLs, glucosylceramide, lactosylceramide, and globotriaosylceramide, were significantly decreased from baseline in the lucerastat group (-49.0% (16.5%), -32.7% (13.0%), and -55.0% (10.4%), respectively). Lucerastat 1,000 mg b.i.d. was well tolerated in patients with Fabry disease over 12 weeks. A marked decrease in plasma GSLs was observed, suggesting clinical potential for lucerastat in patients with Fabry disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/tratamento farmacológico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/farmacocinética , Administração Oral , Adulto , Monitoramento de Medicamentos/métodos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Feminino , Glucosiltransferases/antagonistas & inibidores , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
9.
Sci Rep ; 6: 30059, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27444653

RESUMO

The biogenic amine serotonin (5-HT) is a multi-faceted hormone that is synthesized from dietary tryptophan with the rate limiting step being catalyzed by the enzyme tryptophan hydroxylase (TPH). The therapeutic potential of peripheral 5-HT synthesis inhibitors has been demonstrated in a number of clinical and pre-clinical studies in diseases including carcinoid syndrome, lung fibrosis, ulcerative colitis and obesity. Due to the long half-life of 5-HT in blood and lung, changes in steady-state levels are slow to manifest themselves. Here, the administration of stable isotope labeled tryptophan (heavy "h-Trp") and resultant in vivo conversion to h-5-HT is used to monitor 5-HT synthesis in rats. Dose responses for the blockade of h-5-HT appearance in blood with the TPH inhibitors L-para-chlorophenylalanine (30 and 100 mg/kg) and telotristat etiprate (6, 20 and 60 mg/kg), demonstrated that the method enables robust quantification of pharmacodynamic effects on a short time-scale, opening the possibility for rapid screening of TPH1 inhibitors in vivo. In the bleomycin-induced lung fibrosis rat model, the mechanism of lung 5-HT increase was investigated using a combination of synthesis and steady state 5-HT measurement. Elevated 5-HT synthesis measured in the injured lungs was an early predictor of disease induced increases in total 5-HT.


Assuntos
Agonistas do Receptor de Serotonina/farmacocinética , Serotonina/biossíntese , Animais , Modelos Animais de Doenças , Fibrose/patologia , Marcação por Isótopo , Doenças Pulmonares Intersticiais/patologia , Ratos , Triptofano/administração & dosagem , Triptofano Hidroxilase/antagonistas & inibidores
10.
Mol Genet Metab ; 118(4): 244-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27339554

RESUMO

Niemann-Pick disease type C (NP-C) is a neurovisceral lysosomal cholesterol trafficking and lipid storage disorder caused by mutations in one of the two genes, NPC1 or NPC2. Diagnosis has often been a difficult task, due to the wide range in age of onset of NP-C and clinical presentation of the disease, combined with the complexity of the cell biology (filipin) laboratory testing, even in combination with genetic testing. This has led to substantial delays in diagnosis, largely depending on the access to specialist centres and the level of knowledge about NP-C of the physician in the area. In recent years, advances in mass spectrometry has allowed identification of several sensitive plasma biomarkers elevated in NP-C (e.g. cholestane-3ß,5α,6ß-triol, lysosphingomyelin isoforms and bile acid metabolites), which, together with the concomitant progress in molecular genetic technology, have greatly impacted the strategy of laboratory testing. Specificity of the biomarkers is currently under investigation and other pathologies are being found to also result in elevations. Molecular genetic testing also has its limitations, notably with unidentified mutations and the classification of new variants. This review is intended to increase awareness on the currently available approaches to laboratory diagnosis of NP-C, to provide an up to date, comprehensive and critical evaluation of the various techniques (cell biology, biochemical biomarkers and molecular genetics), and to briefly discuss ongoing/future developments. The use of current tests in proper combination enables a rapid and correct diagnosis in a large majority of cases. However, even with recent progress, definitive diagnosis remains challenging in some patients, for whom combined genetic/biochemical/cytochemical markers do not provide a clear answer. Expertise and reference laboratories thus remain essential, and further work is still required to fulfill unmet needs.


Assuntos
Biomarcadores/sangue , Proteínas de Transporte/genética , Glicoproteínas/genética , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/genética , Idade de Início , Ácidos e Sais Biliares/sangue , Colestanos/sangue , Testes Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/fisiopatologia , Fosforilcolina/análogos & derivados , Fosforilcolina/sangue , Esfingosina/análogos & derivados , Esfingosina/sangue , Proteínas de Transporte Vesicular
11.
PLoS One ; 9(12): e114669, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479233

RESUMO

Niemann-Pick disease type C (NP-C) is a devastating, neurovisceral lysosomal storage disorder which is characterised by variable manifestation of visceral signs, progressive neuropsychiatric deterioration and premature death, caused by mutations in the NPC1 and NPC2 genes. Due to the complexity of diagnosis and the availability of an approved therapy in the EU, improved detection of NP-C may have a huge impact on future disease management. At the cellular level dysfunction or deficiency of either the NPC1 or NPC2 protein leads to a complex intracellular endosomal/lysosomal trafficking defect, and organ specific patterns of sphingolipid accumulation. Lysosphingolipids have been shown to be excellent biomarkers of sphingolipidosis in several enzyme deficient lysosomal storage disorders. Additionally, in a recent study the lysosphingolipids, lysosphingomyelin (SPC) and glucosylsphingosine (GlcSph), appeared to be elevated in the plasma of three adult NP-C patients. In order to investigate the clinical utility of SPC and GlcSph as diagnostic markers, an in-depth fit for purpose biomarker assay validation for measurement of these biomarkers in plasma by liquid chromatography-tandem mass spectrometry was performed. Plasma SPC and GlcSph are stable and can be measured accurately, precisely and reproducibly. In a retrospective analysis of 57 NP-C patients and 70 control subjects, median plasma SPC and GlcSph were significantly elevated in NP-C by 2.8-fold and 1.4-fold respectively. For miglustat-naïve NP-C patients, aged 2-50 years, the area under the ROC curve was 0.999 for SPC and 0.776 for GlcSph. Plasma GlcSph did not correlate with SPC levels in NP-C patients. The data indicate excellent potential for the use of lysosphingomyelin in NP-C diagnosis, where it could be used to identify NP-C patients for confirmatory genetic testing.


Assuntos
Biomarcadores/sangue , Doença de Niemann-Pick Tipo C/sangue , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Adolescente , Adulto , Idoso , Coleta de Amostras Sanguíneas/métodos , Estudos de Casos e Controles , Ácido Edético/química , Feminino , Heparina/química , Humanos , Masculino , Doença de Niemann-Pick Tipo C/diagnóstico , Fosforilcolina/sangue , Psicosina/análogos & derivados , Psicosina/sangue , Reprodutibilidade dos Testes , Estudos Retrospectivos , Esfingosina/sangue , Espectrometria de Massas em Tandem/métodos , Adulto Jovem
12.
J Biol Chem ; 288(31): 22576-83, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23754276

RESUMO

A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antimaláricos/farmacologia , Plasmodium falciparum/fisiologia , Raios Ultravioleta , Animais
13.
Hum Mol Genet ; 22(21): 4349-56, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23773996

RESUMO

Niemann-Pick disease type C (NP-C) is a rare, autosomal-recessive, progressive neurological disease caused by mutations in either the NPC1 gene (in 95% of cases) or the NPC2 gene. This observational, multicentre genetic screening study evaluated the frequency and phenotypes of NP-C in consecutive adult patients with neurological and psychiatric symptoms. Diagnostic testing for NP-C involved NPC1 and NPC2 exonic gene sequencing and gene dosage analysis. When available, results of filipin staining, plasma cholestane-3ß,5α,6ß-triol assays and measurements of relevant sphingolipids were also collected. NPC1 and NPC2 gene sequencing was completed in 250/256 patients from 30 psychiatric and neurological reference centres across the EU and USA [median (range) age 38 (18-90) years]. Three patients had a confirmed diagnosis of NP-C; two based on gene sequencing alone (two known causal disease alleles) and one based on gene sequencing and positive filipin staining. A further 12 patients displayed either single mutant NP-C alleles (8 with NPC1 mutations and 3 with NPC2 mutations) or a known causal disease mutation and an unclassified NPC1 allele variant (1 patient). Notably, high plasma cholestane-3ß,5α,6ß-triol levels were observed for all NP-C cases (n = 3). Overall, the frequency of NP-C patients in this study [1.2% (95% CI; 0.3%, 3.5%)] suggests that there may be an underdiagnosed pool of NP-C patients among adults who share common neurological and psychiatric symptoms.


Assuntos
Proteínas de Transporte/genética , Testes Genéticos , Glicoproteínas/genética , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Feminino , Variação Genética , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Mutação , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/fisiopatologia , Doença de Niemann-Pick Tipo C/psicologia , Fenótipo , Análise de Sequência de DNA , Proteínas de Transporte Vesicular , Adulto Jovem
14.
Biochemistry ; 46(38): 10817-27, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17760423

RESUMO

The mechanism of the first electron transfer from reduced cofactor to O2 in the catalytic cycle of copper amine oxidases (CAOs) remains controversial. Two possibilities have been proposed. In the first mechanism, the reduced aminoquinol form of the TPQ cofactor transfers an electron to the copper, giving radical semiquinone and Cu(I), the latter of which reduces O2 (pathway 1). The second mechanism invokes direct transfer of the first electron from the reduced aminoquinol form of the TPQ cofactor to O2 (pathway 2). The debate over these mechanisms has arisen, in part, due to variable experimental observations with copper amine oxidases from plant versus other eukaryotic sources. One important difference is the position of the aminoquinol/Cu(II) to semiquinone/Cu(I) equilibrium on anaerobic reduction with amine substrate, which varies from almost 0% to 40% semiquinone/Cu(I). In this study we have shown how protein structure controls this equilibrium by making a single-point mutation at a second-sphere ligand to the copper, D630N in Hansenula polymorpha amine oxidase, which greatly increases the concentration of the cofactor semiquinone/Cu(I) following anaerobic reduction by substrate. The catalytic properties of this mutant, including 18O kinetic isotope effects, point to a conservation of pathway 2, despite the elevated production of the cofactor semiqunone/Cu(I). Changes in kcat/Km[O2] are attributed to an impact of D630N on an increased affinity of O2 for its hydrophobic pocket. The data in this study indicate that changes in cofactor semiquinone/Cu(I) levels are not sufficient to alter the mechanism of O2 reduction and illuminate how subtle features are able to control the reduction potential of active site metals in proteins.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Cobre/química , Cobre/metabolismo , Modelos Químicos , Monoaminoxidase/metabolismo , Oxigênio/metabolismo , Pichia/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Sítios de Ligação , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Cinética , Metaloproteínas/metabolismo , Oxirredução , Conformação Proteica , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Especificidade por Substrato
15.
FEBS Lett ; 579(23): 5170-4, 2005 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16153644

RESUMO

The ferrous iron and 2-oxoglutarate (2OG) dependent oxygenases catalyse two electron oxidation reactions by coupling the oxidation of substrate to the oxidative decarboxylation of 2OG, giving succinate and carbon dioxide coproducts. The evidence available on the level of incorporation of one atom from dioxygen into succinate is inconclusive. Here, we demonstrate that five members of the 2OG oxygenase family, AlkB from Escherichia coli, anthocyanidin synthase and flavonol synthase from Arabidopsis thaliana, and prolyl hydroxylase domain enzyme 2 and factor inhibiting hypoxia-inducible factor-1 from Homo sapiens all incorporate a single oxygen atom, almost exclusively derived from dioxygen, into the succinate co-product.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Ácido Succínico/metabolismo , Proteínas de Bactérias/química , Humanos , Ferro/química , Ácidos Cetoglutáricos/química , Estrutura Molecular , Oxirredução , Oxigênio/química , Isótopos de Oxigênio/química , Isótopos de Oxigênio/metabolismo , Oxigenases/química , Proteínas de Plantas/química , Ácido Succínico/química
16.
Org Biomol Chem ; 3(17): 3117-26, 2005 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16106293

RESUMO

During the biosynthesis of the tricyclic flavonoid natural products in plants, oxidative modifications to the central C-ring are catalysed by Fe(ii) and 2-oxoglutarate dependent oxygenases. The reactions catalysed by three of these enzymes; flavone synthase I, flavonol synthase and anthocyanidin synthase (ANS), are formally desaturations. In comparison, flavanone 3beta-hydroxylase catalyses hydroxylation at the C-3 pro-R position of 2S-naringenin. Incubation of ANS with the unnatural substrate (+/-)-naringenin results in predominantly C-3 hydroxylation to give cis-dihydrokaempferol as the major product; trans-dihydrokaempferol and the desaturation product, apigenin are also observed. Labelling studies have demonstrated that some of the formal desaturation reactions catalysed by ANS proceed via initial C-3 hydroxylation followed by dehydration at the active site. We describe analyses of the reaction of ANS with 2S- and 2R-naringenin substrates, including the anaerobic crystal structure of an ANS-Fe-2-oxoglutarate-naringenin complex. Together the results reveal that for the 'natural' C-2 stereochemistry of 2S-naringenin, C-3 hydroxylation predominates (>9 : 1) over desaturation, probably due to the inaccessibility of the C-2 hydrogen to the iron centre. For the 2R-naringenin substrate, desaturation is significantly increased relative to C-3 hydroxylation (ca. 1 : 1); this is probably a result of both the C-3 pro-S and C-2 hydrogen atoms being accessible to the reactive oxidising intermediate in this substrate. In contrast to the hydroxylation-elimination desaturation mechanism for some ANS substrates, the results imply that the ANS catalysed desaturation of 2R-naringenin to form apigenin proceeds with a syn-arrangement of eliminated hydrogen atoms and not via an oxygenated (gem-diol) flavonoid intermediate. Thus, by utilising flavonoid substrates with different C-2 stereochemistries, the balance between C-3 hydroxylation or C-2, C-3 desaturation mechanisms can be altered.


Assuntos
Flavanonas/química , Oxigenases/química , Catálise , Cristalografia por Raios X , Flavanonas/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução , Conformação Proteica , Estrutura Terciária de Proteína , Estereoisomerismo , Especificidade por Substrato
17.
J Biol Chem ; 279(2): 1206-16, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14570878

RESUMO

Anthocyanidin synthase (ANS), flavonol synthase (FLS), and flavanone 3beta-hydroxylase (FHT) are involved in the biosynthesis of flavonoids in plants and are all members of the family of 2-oxoglutarate- and ferrous iron-dependent oxygenases. ANS, FLS, and FHT are closely related by sequence and catalyze oxidation of the flavonoid "C ring"; they have been shown to have overlapping substrate and product selectivities. In the initial steps of catalysis, 2-oxoglutarate and dioxygen are thought to react at the ferrous iron center producing succinate, carbon dioxide, and a reactive ferryl intermediate, the latter of which can then affect oxidation of the flavonoid substrate. Here we describe work on ANS, FLS, and FHT utilizing several different substrates carried out in 18O2/16OH2, 16O2/18OH2, and 18O2/18OH2 atmospheres. In the 18O2/16OH2 atmosphere close to complete incorporation of a single 18O label was observed in the dihydroflavonol products (e.g. (2R,3R)-trans-dihydrokaempferol) from incubations of flavanones (e.g. (2S)naringenin) with FHT, ANS, and FLS. This and other evidence supports the intermediacy of a reactive oxidizing species, the oxygen of which does not exchange with that of water. In the case of products formed by oxidation of flavonoid substrates with a C-3 hydroxyl group (e.g. (2R,3R)-trans-dihydroquercetin), the results imply that oxygen exchange can occur at a stage subsequent to initial oxidation of the C-ring, probably via an enzyme-bound C-3 ketone/3,3-gem-diol intermediate.


Assuntos
Flavonoides/química , Oxigenases de Função Mista/química , Oxirredutases/química , Oxigenases/química , Proteínas de Plantas , Dióxido de Carbono/química , Divisão Celular , Cromatografia Líquida de Alta Pressão , Ferro/química , Ácidos Cetoglutáricos/química , Modelos Químicos , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Estereoisomerismo , Ácido Succínico/química , Água/química
18.
Bioorg Med Chem Lett ; 13(21): 3853-7, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14552794

RESUMO

Anthocyanidin synthase (ANS), an iron(II) and 2-oxoglutarate (2OG) dependent oxygenase, catalyses the penultimate step in anthocyanin biosynthesis by oxidation of the 2R,3S,4S-cis-leucoanthocyanidins. It has been believed that in vivo the products of ANS are the anthocyanidins. However, in vitro studies on ANS using optically active cis- and trans-leucocyanidin substrates identified cyanidin as only a minor product; instead both quercetin and dihydroquercetin are products with the distribution being dependent on the C-4 stereochemistry of the leucocyanidin substrates.


Assuntos
Flavonoides/metabolismo , Oxigenases/metabolismo , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Descarboxilação , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Especificidade por Substrato
19.
J Biol Chem ; 278(12): 10157-61, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12517755

RESUMO

AlkB is one of four proteins involved in the adaptive response to DNA alkylation damage in Escherichia coli and is highly conserved from bacteria to humans. Recent analyses have verified the prediction that AlkB is a member of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase family of enzymes. AlkB mediates repair of methylated DNA by direct demethylation of 1-methyladenine and 3-methylcytosine lesions. Other members of the Fe(II) and 2OG-dependent oxygenase family, including those involved in the hypoxic response, are targets for therapeutic intervention. Assays measuring 2OG turnover were used to investigate the selectivity of AlkB. 1-Methyladenosine, 1-methyl-2'-deoxyadenosine, 3-methylcytidine, and 3-methyl-2'-deoxycytidine all stimulated 2OG turnover by AlkB but were not demethylated indicating an uncoupling of 2OG and prime substrate oxidation and that oligomeric DNA is required for hydroxylation and subsequent demethylation. In contrast the equivalent unmethylated nucleosides did not stimulate 2OG turnover indicating that the presence of a methyl group in the substrate is important in initiating oxidation of 2OG. Stimulation of 2OG turnover by 1-methyladenosine was highly dependent on the presence of a reducing agent, ascorbate or dithiothreitol. Following the observation that AlkB is inhibited by high concentrations of 2OG, analogues of 2OG, including 2-mercaptoglutarate, were found to specifically inhibit AlkB. The flavonoid quercetin inhibits both AlkB and the 2OG oxygenase factor-inhibiting hypoxia-inducible factor (FIH) in vitro. FIH inhibition by quercetin occurs in the presence of excess iron indicating a specific interaction, while the inhibition of AlkB by quercetin is, predominantly, due to nonspecific iron chelation.


Assuntos
Proteínas de Escherichia coli/antagonistas & inibidores , Oxigenases de Função Mista/antagonistas & inibidores , Ácido Ascórbico/farmacologia , Proteínas de Escherichia coli/metabolismo , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Quercetina/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
20.
Structure ; 10(1): 93-103, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11796114

RESUMO

Flavonoids are common colorants in plants and have long-established biomedicinal properties. Anthocyanidin synthase (ANS), a 2-oxoglutarate iron-dependent oxygenase, catalyzes the penultimate step in the biosynthesis of the anthocyanin class of flavonoids. The crystal structure of ANS reveals a multicomponent active site containing metal, cosubstrate, and two molecules of a substrate analog (dihydroquercetin). An additional structure obtained after 30 min exposure to dioxygen is consistent with the oxidation of the dihydroquercetin to quercetin and the concomitant decarboxylation of 2-oxoglutarate to succinate. Together with in vitro studies, the crystal structures suggest a mechanism for ANS-catalyzed anthocyanidin formation from the natural leucoanthocyanidin substrates involving stereoselective C-3 hydroxylation. The structure of ANS provides a template for the ubiquitous family of plant nonhaem oxygenases for future engineering and inhibition studies.


Assuntos
Arabidopsis/enzimologia , Oxigenases/química , Oxigenases/metabolismo , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Oxigenases/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...